正方体和长方体教案6篇

时间:
Gourmand
分享
下载本文

写一份好的教案能够增强教师的课堂表现力和感染力,出色的教案会促使教师们相互启发,激发创造力,职场巴巴小编今天就为您带来了正方体和长方体教案6篇,相信一定会对你有所帮助。

正方体和长方体教案6篇

正方体和长方体教案篇1

教学目标

1.掌握长方体和正方体的特征,认识它们之间的关系.

2.培养学生动手操作、观察、抽象概括的能力和初步的空间观念.

3.渗透事物是相互联系,发展变化的辩证唯物主义观点.

教学重点

1.长方体和正方体的特征.

2.立体图形的识图.

教学难点

1.长方体和正方体的特征.

2.立体图形的识图.

教具准备

教具:长方体框架、长方体、正方体、圆柱、圆台、长方台等;投影片;动画.

学具:长方体和正方体纸盒.

教学设计

一、复习准备.

1、请同学们自己画一个已经学习过的平面图形;再请每位同学用手摸一摸画出的图形;老师明确:这些图形都在一个平面上,叫做平面图形.

2、教师摆出长方体、正方体、圆柱、圆台、长方台、墨水瓶盒等.

教师提问:这些物体的各部分都在一个面上吗?(不是)

教师明确:这些物体的各部分不在一个面上,它们都是立体图形.

3、引入:今天这节课我们要进一步认识长方体有什么特征.

教师板书:长方体的认识

二、学习新课.

(一)长方体的特征.

1、请同学取出自己准备的长方体.

教师提问:请用手摸一摸长方体是由什么围成的?

请用手摸一摸两个面相交处有什么?

请摸一模三条棱相交处有什么?

教师板书:面、棱、顶点

2、参考讨论提纲来研究长方体的特征.【演示动画长方体的特征】

讨论提纲:

①长方体有几个面?面的位置和大小有什么关系?

②长方体有多少条棱?棱的位置、长短有什么关系?

③长方体有多少个顶点?

教师板书:长方体:

面:6个,长方形(也可能有两个相对的面是正方形),相对的面完全相同.

棱:12条,相对的4条棱长度相等.

顶点:8个.

教师:请完整地说一说长方体的特征.

3、比较立体图形与平面图形的区别.

老师提问:长方体是立体图形,画在纸上如何与平面图形区别呢?

请观察,你能看到几个面?哪几个面?

你能看见几条棱?哪几条棱?

教师介绍长方体的画法:

看不见的棱画在图纸上用虚线表示,最后面画出的是长方形,其它的面画出的是平行四边形.

4、出示长方体框架观察.

教师提问:框架上的12条棱可以分几组?怎样分?

相交于一个顶点的三条棱长度相等吗?

教师明确:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高.

(二)正方体特征.

1、【演示动画正方体的特征】

教师提问:看一看新得到的长方体与原来长方体比较有什么变化?

(长、宽、高变为相等,六个面都变成了正方形,长方体变为正方体)

2、对照长方体的特征学生自己研究正方体的特征.

学生讨论、归纳后,教师板书:正方体:

面:6个完全相同的正方形.

棱:12条棱长度都相等.

顶:8个.

3、学生讨论比较长方体和正方体的特征.

相同点:面、棱、顶点的数量上都相同;

不同点:在面的.形状、面积、棱的长度方面不相同.

教师提问:看一看长方体的特征正方体是否都有?试说一说长方体和正方体的关系.

(正方体是特殊的长方体)

教师板书集合图:

三、巩固反馈.

1、量一量自己手中的长方体的长、宽、高,说出每个面的长和宽是多少?

2、根据图中数据口答.

(1)长方体的长是厘米,宽厘米,高厘米, 12条棱长的和是厘米.

(2)这幅图中的几何体是体,12条棱长的和是分米.

(3)如图一个长方体,它的长、宽、高分别是9厘米,3厘米和2。5厘米.它上面的面长是厘米,宽厘米,左边的面长厘米,宽厘米,相交于一个顶点的三条棱长和是厘米.

3、判断.正确的在括号里画,错误的画.

(1)长方体的六个面一定是长方形;

(2)正方体的六个面面积一定相等;

(3)一个长方体(非正方体)最多有四个面面积相等;

(4)相交于一个顶点的三条棱相等的长方体一定是正方体.

四、课堂总结.

谁来说一说长方体和正方体的特征和它们之间的关系?如何看图纸上的立体图?

五、课后作业 .

1、拿一个火柴盒,量一量它的长、宽、高各是多少?然后说一说每个面的长和宽各是多少?

2、说出下图表示的物体是什么形状,并且说明:

它的上面是什么形?长和宽各是多少?

它的右侧面是什么形,长和宽各是多少?

它的前面是什么形?长和宽各是多少?

它的下面和后面是什么形?长和宽各是多少?

六、板书设计

正方体和长方体教案篇2

教学目标:

1、知识技能目标:掌握长方体和正方体的特征,理解长方体和正方体的关系。

2、能力目标:指导启发学生运用观察、测量等方法,探究长方体和正方体的有关特征,开发学生智能。

3、情感态度目标:通过观察、摆弄实物帮助学生建立起空间观念。

教具学具:

教师准备:墨水盒、牙膏盒、魔方、乒乓球等。

学生准备:边长1厘米的小正方体(每组至少8个)、长方体和正方体实物。

教学手段:多媒体辅助教学

教学过程:

一、导入新课

师:请同学们来回忆:我们学过了哪些平面图形?(生答)这些图形都是由什么围成的?(线段)。课前老师曾让同学们把数学书最后两页的组合图形纸板沿虚线内折,然后围起来,你围成了什么形体?举起来让大家看看。(长方体和正方体)长方体和正方体与我们学过的平面图形有什么不同?(它们是由面围成的,有一定的厚度。)

师:像这样由面围成的图形,都占有一定的空间,我们把他们叫做立体图形。比如:(出示实物)墨水盒、魔方、牙膏盒、皮球、灯罩等这些物体的形状都是立体图形。你能不能举出几个形状是长方体或正方体的例子?(学生举例)

那么长方体和正方体都有哪些特征呢?这节课,我们就来认识长方体和正方体。(板书课题)

二、探究新知

1、认识长方体各部分名称

师:长方体有什么特征呢?要探讨这个问题,首先让我们来认识一下长方体各部分的名称。请同学们拿出准备的长方体学具或实物,用手摸一摸,你摸到了长方体的哪一部分?然后打开书20页,看看你摸到的部分在长方体中叫什么?看谁最先找到答案。(根据学生回答板书:面、棱、顶点)

师:请同学们放下书,看老师的演示,边看边用手摸摸长方体学具,感觉一下长方体的面、棱、顶点。(电脑演示长方体的面、棱、顶点)

2、认识长方体的特征(分组合作学习)

师:认识了长方体的`面、棱、顶点,下面我们就来研究长方体的这几部分各有什么特征?(出示学习提纲):1、长方体有几个面?这些面是什么图形?相对的面面积有什么关系?2、长方体有几条棱?每组相对的棱长度有什么关系?3、长方体有几个顶点?请同学们根据学习提纲自由选择方法合作学习21页内容。看看你用了哪些方法,都学会了什么?(研讨)

师:谁能把你们的学习结果汇报一下。

生:长方体有6个面,每个面都是长方形,也可能有两个相对的面是正方形。

师:你有这样的长方体吗?(有,出示)哪是相对的面?有几组?(指实物回答)

生:长方体相对的面面积相等。

师:你怎么知道的?

生:我用剪子把相对的面剪下来比较。(师电脑演示“相对面相等”)

师:说说棱的特点。

生:长方体有12条棱。

师:可以分成几组?

生:可以分成3组,每组有4条,每组的4条棱长度相等。(教师演示“相对棱相等”)

师:你用什么办法来证明相对的棱长度相等?

生1:用尺子量的。

生2:(出示:长方体棱的框架)如果相对棱不相等,这个长方体就会变形了。

师:噢,你用的是反证法来说明。

生:老师我把长方体的棱分成了4组,每组有3条,就是从一个顶点引出的3条棱。

师:这种分法也是正确的,而且很独特。谁再说说长方体的顶点?(长方体有8个顶点)(演示“顶点”)

1、认识长方体的长、宽、高

师:刚才我们把三条棱相交的一点叫做顶点,这也就是说过长方体的一个顶点有三条棱,这三条棱的长度分别叫什么?请同学们看书后回答。

2、认识长方体直观图

师:下面请同学们再次拿出长方体学具,将它放在眼前的不同方位,观察:你看到了长方体的几个面?都是什么图形?

生:(1个、2个、3个)都是长方形的。

生:不对,从我这里看,它的左面和上面就是平行四边形。

师:同学们观察的非常细致。(电脑演示直观图)我们在作图时,除了前面和后面外,其它各面都画成平行四边形,但实际上是长方形。(师边说边作图,并强调看不见的棱用虚线来表示)

3、自学正方体

师:想一想:如果将长方体的长、宽、高调整,使长、宽、高相等,会得到什么形体呢?(教师演示将长方体变成一个正方体)它也叫立方体。出示魔方:它有什么特征呢?(出示自学提纲):1、正方体有几个面?大小怎样?2、正方体有几条棱?长短有什么关系?3、正方体有几个顶点?请同学们边观察边自学22页。(汇报、板书)

4、比较二者的异同

师:同学们观察学具看板书,谁能说说长方体和正方体的有什么相同之处和不同之处。(学生叙述,师用两种色笔分别圈画。)通过以上比较,你发现了什么?(长方体的所有特征正方体都具有,而正方体的特征长方体不一定全有。由此,我们可以得出结论:正方体是一种特殊的长方体。)我们可以用这样的图来表示它们之间的关系。(师演示集合图)

三、过渡:这节课,我们认识了长方体和正方体的实物与图形,归纳了长方体和正方体的特征,还分析了二者的关系。下面我们来做做练习,检验自己是否对长方体和正方体有了明确的认识。

四、巩固应用(电脑出示)

正方体和长方体教案篇3

【教材分析】

苏教版课程标准教材编写的《长方体和正方体的认识》以学生已有的观察物体的丰富经验为基础,先明确长方体有几个面,从不同的角度观察一个长方体最多能同时看到几个面等知识,自然地由实物图抽象出直观图。在介绍棱和顶点的概念后,引导研究有几条棱、几个顶点,接着研究面和棱的特征。教材力图沟通棱、顶点和面之间的联系,引导学生用看一看、量一量、比一比的方法,在合作交流中探究长方体的特征。

在以往的教学中,我们大多注重用“直观实证”的方式研究长方体的特征,而对面、棱、顶点之间关系的认识更多停留在定义所描述的层次。这也就限制了这一内容对发展学生空间观念的作用。事实上,学生在以往的学习和日常生活的经验中,已经积累了关于长方体和正方体的一些认识。如何在此基础上,系统地、深层次构建对长方体特征的认识是值得研究的问题。学生学习“体”的困难往往在于缺少从面到体过渡的桥梁,从点、线、面到体的认识发展需要充分地在“体”上寻找点、线、面之间的联系,实现认知结构的顺应,这是空间观念建立的关键。

【教学片段】

师:刚才,同学们动脑筋有条理地数出了长方体有─??

生(齐):6个面,12条棱,8个顶点。

师:我们的研究不能满足于“是什么”,还要探究“为什么”。

(学生疑惑地用眼神告诉我:这有什么“为什么”?事实就是这样嘛!)

师:没问题?我先来说一个,长方体有6个面,每个面都是(长方形),长方形有4条边,这些边就是长方体的(棱)。那长方体就应该有6×4=24条棱,可为什么只有12条棱呢?

(学生仔细打量眼前的长方体模型,积极探索着答案。)

生:(跑到黑板前指着直观图)就拿这条棱来说,它既是上面的一条边,又是前面的一条边。所以,在计算时,同一条棱算了两次。其他的棱也是这样。

师:那应该怎样算呢?

生(齐):6×4÷2=12条棱。

师:你现在也能提一些“为什么”的问题吗?

生1:长方体的6个面,每个面上有4个顶点,能算出24个顶点,为什么只有8个顶点?

师:问得好!你有答案吗?

生1:我有答案,但想让其他同学回答。

生2:(指着直观图上的一个顶点)这个顶点既是上面的一个顶点,又是前面的一个顶点,还是右面的一个顶点。也就是说这个顶点计算时被算了3次。其他顶点也一样。所以应该用6×4÷3=8个顶点。

师:真是太好了!刚才我们是由面的个数,根据面与棱、顶点之间的关系推算出棱的条数、顶点的个数。你还想研究什么问题?

生1:能不能由棱的条数推算出顶点的个数、面的个数?

生2:由顶点的个数是不是也能推算出面的个数和棱的条数?

师:真会提问题!同学们有兴趣研究吗?

(学生兴致勃勃地研究并汇报了两个问题。)

师:观察一下这6道算式,在利用面、棱、顶点之间关系推算时,有什么规律?

生1:都先算出了24。这是为什么?

(学生陷入了沉思,不一会儿,陆续举起手。)

生2:这儿的24表示的是24条边(棱)或者24个顶点。因为长方体是由6个长方形围成的立体图形。这6个长方形一共有24条边、24个顶点。

生3:推算时,就要先算出24条边或24个顶点,再看看与要求的面、棱、顶点之间的数量关系,计算出最后的结果。

师:老师也没想到,同学们通过自己的积极思考,弄清楚了这么多“为什么”。

……

师:同学们通过看一看、量一量、比一比等多种方法发现了长方体面和棱的特征。除此之外,有没有其他方法研究面和棱的特征?

生:通过重叠比较,我们发现长方体相对的面完全相同。两个长方形完全一样,也就是它们的长和宽分别相等。所以,长方体相对的棱长度相等。

师:反过来呢?

生:通过测量,我们发现相对的棱长度相等。而相对面的长和宽分别是两组相对的棱,长和宽分别相等的长方形完全相同。

师:真厉害!看来,研究长方体的特征不仅可以通过操作来发现,更可以运用所学的知识思考来发现。

【教学反思】

一、数学学习是经验的,也是推理的

新课程注重向学生提供充分的从事数学活动的机会,使学生获得广泛的数学活动经验,这符合学生的认知规律和心理特征。但如今的课堂上不乏学生的观察、操作、猜测、验证等活动,但很少运用数学知识进行简单的推理。有人说,推理是中学的事。其实不然,推理是数学的基本思维方式,也是人们学习和生活中经常使用的思维方式。如果忽视学生推理能力的培养,会在很大程度上阻碍数学思维的发展。所以,重视学生在具体、丰富的活动中经历数学知识的形成过程,获得体验的同时,更要注重学生从已有的数学事实出发,展开合情推理和演绎推理。小学几何常被称为“经验几何”,这并不意味着几何教学无须承担发展推理能力的重任。对于六年级学生来说,已经积累了相当丰富的研究平面图形的知识经验,已经初步认识了立体图形,并且积累了丰富的观察物体的经验,这些知识经验基础使学生探索长方体的特征没有任何障碍。因此,从已有的知识经验出发,更好地发展学生的空间观念理应成为教学的诉求。实践表明:从学生熟悉的面(长方形)的数量和特征出发,联系面围成体的活动经验,对棱的条数、顶点的个数及棱的特征展开验证性推理是非常有价值的。这其中有凭借经验和直觉,通过归纳和类比进行的推测,也有依据已有的某个事实,按照逻辑和运算进行的推理。形式化结果的解释也蕴含着丰富的推理,由面到棱和由棱到面的特征推断让我们看到了证明的雏形。这些都促进了学生数学思维的发展。

二、空间观念是具象的,也是关系的

一般认为,小学阶段几何图形教学承载的空间观念目标主要是能进行实物和图形间转换。这种空间观念是相对“具象的”。实践表明:要实现实物与图形间的转换,学生的认知结构中必须建立准确的模型。这就要求,对图形的认识不能停留于直观建构,而要适度抽象为头脑中的模型,这种模型的稳固形成依赖于对图形基本元素关系的理性思辨。否则,学生头脑中的模型依然是模糊的,不能随时顺利提取和准确利用。引导六年级的学生有意识地思考长方体的基本元素——面、棱、顶点之间关系,不仅必要而且可行。这种关系的找寻以棱和顶点的概念为出发点,以各自数量之间的关系、面和棱的特征联系为主要研究对象。教师引导学生以长方体的模型和直观图为依托,首先考量面的个数与棱的条数之间的关系,深化了对“两个面相交的线叫做棱”这一概念的认识;接着由面的个数到顶点的个数的推算则从面的角度揭示了顶点的形成;后来又逆向地从棱到顶点、棱到面、顶点到棱、顶点到面等角度全方位、深刻揭示了各元素之间的内在联系:三条棱相交的点叫做顶点,四条棱围成了一个面,一条棱的两个端点就是两个顶点,一个长方形四个角的顶点就长方体的顶点等。教者还引导学生从面的特征推理出棱的特征、从棱的特征推理出面的特征,这也深刻揭示着面和棱之间的密切联系,沟通了面与体的内在联系。这些元素关系的建立极大地明晰了学生认知结构中的长方体模型,为后面学习长(正)方体展开图、长方体的表面积等知识提供了坚实的'观念基础。

三、课堂思考是个体的,也是群体的

学生独立思考的能力是在教师的引导和与同伴的思维碰撞中逐渐形成和发展的。课堂中学生要进行独立思考,但个体思维的成果也需要与同伴的交流和碰撞。这其中,教师是促进个体思维深入、群体思维共享的组织者和引导者。当个体思维依靠自身的力量不能打开或难以实现转换时,教师的示范和引导便成为重要的源头。正如学生面对由对面、棱、顶点的“是多少”向“为什么”的思考跃进时,教师示范提出了“为什么”的问题,将思维聚焦于利用关系推算数量,从而搭建起一个对原有信息整理分类、分析关系的思维桥梁。这也激活了学生自主提问和思考的方向,学生的思维随着有价值的问题的提出不断展开,个体思维的丰富成果不断被演化和推广。在由此及彼的类比处,教师适时的点拨:“刚才我们是由面的个数,根据面与棱、顶点之间的关系推算出棱的条数、顶点的个数。你还想研究什么问题?”再次打开学生的思路,促进自主提问和思考的深入。在研究似乎可以告一段落时,教师画龙点睛式的追问“有什么规律”,再次引发群体思维的风暴。而后,学生群体水到渠成地“证明”棱的特征、面的特征,更展现出思维的无限潜力。这么丰富的思辨成果只有在教师的引导和点拨下通过群体的思维才能不断地展现。

正方体和长方体教案篇4

教学目标:

1、通过实物认识长、正方体,通过学生的观察、对比、小组讨论,了解长、正方体的特点。

2、在操作中认识长、宽、高和正方体的棱长。

3、培养学生的空间想象能力和空间观念。

教学重难点:

通过实物认识长、正方体,了解长(正)方体的特征。

教学过程:

一、复习提问

请同学们回忆一下,我们已经学过哪些平面图形? 长方形和正方形各有什么特征?这两种平面图形之间有什么关系? 我们以前学过的这些图形都是平面图形,今天我们要认识两种立体图形——长方体和正方体。(板书课题:长方体和正方体的认识)

二、探究新知

(一)新课引入:指着各种形体的教具提问,哪些物体的形体是长方体?请学生把长方体挑出来。在日常的生活中你还见过哪些物体的形状是长方体的?学生举例。 我们为什么把这些形状称做长方体呢?长方体有什么特征呢?下面我们一起来研究。

(二)认识长方体。

1.教师拿出火柴盒的模型,说明面、棱和顶点。

2.学生拿学具小组讨论,并出示小组讨论提纲,同时讨论后填写操作实验报告。

面 棱 顶点 长方体 数量 形状 大小 数量 长度 数量 位置

(1)探究完成实验报告。

(2)汇报讨论结果。

(3)认识长方体的长、宽、高。

4.引导学生 指出自己手中学具的.长、宽、高,改变学具的位置,在指出长、宽、高。向学生说明长、宽、高根据长方体所摆的位置不同而改变。

5.练习: 要求根据特征判断下面图形是不是长方体?并说出长方体立体图形的长、宽、高是多少厘米。

(教具)

(三)认识正方体

1.学生找出正方体实物来独立观察,观察后按提提纲独立回答问题,独立填写实验操作报告。 独立观察提纲:

(1)数一数,正方体有几个面?每个面是什么形状?相对的面的形状、大小有什么特点?

(2)摸一摸,正方体有多少条棱?它们的长度相等吗?

(3)找一找,正方体有几个顶点? 独立填写实验操作报告: 面 棱 顶点 正方体 数量 形状 大小 数量 长度 数量 位置 1.班集体讨论,订正学生独立完成的实验报告,并完成教师板书,注意启发学生自己总结正方体的特征 2.比较长方体和正方体有何异同? 相同点:6个面、12条棱、8个顶点。 不同点:形状、大小、长短不同,正方体有6个面都是正方形,面积都相等,12个棱长都相等。 3.引导学生认识长、正方体的关系:

(四)新课小结

这结课我们学习了什么内容?你还有什么问题?

三、看书质疑(略)

四、巩固练习

(1)长方体和正方体都有6个面,12条棱,8个顶点。( )

(2)长方体的六个面都是长方形。( )

(3)正方体是由六个正方形组成的图形。( )

(4)正方体是特殊的长方体。( )

正方体和长方体教案篇5

教学内容

教科书第51--52页的例1、例2,课堂活动及练习十二的1--3题。

教学目标

1.知识与技能:引导学生通过实验发现并探究出长方体和正方体体积的计算公式,理解长方体和正方体体积的计算方法。

2.过程与方法:会运用公式正确计算长方体和正方体的体积。

3.情感、态度与价值观:渗透"猜测--实验探究--验证"的学习方法,发挥学生的主体性,为今后学习其他立体图形体积的计算打下基础。

教具学具

学生准备12个体积是1cm3的小正方体木块。教师准备多媒体课件,及表格一和表格二。

教学重点

1.理解长方体和正方体的体积公式的推导过程。

2.会计算长方体和正方体的体积。

教学难点

长方体、正方体的体积计算的推导过程。

教学过程

一、问题引入

1.师:小朋友,你们喜欢搭积木游戏吗?这是老师用1cm3的正方体拼成的积木,(课件出示)你能说说它们的体积吗?

师:你是怎样想的?

教师:我们要计量一个物体的体积,就要看这个物体中含有多少个体积单位。

2.师(出示一个长方体模型):要知道它的体积是多少,你有什么办法?

生1:可以将这个长方体切成小的体积单位,看它包含着多少个这样的体积单位,就可以知道它的体积是多少。

生2:将这个长方体浸没在水中,根据水面上升的刻度读出长方体的体积。

生3:量出长方体的长、宽、高,用长×宽×高。

教师:比较一下,哪种方法更适用呢?在生活中,有许多长方体是不能切开来数的。把什么物体都浸没在水中,看水面上升的刻度也比较麻烦。那么,生3的方法是否成立?这就是我们这节课要学习的内容。

(板书课题:长方体和正方体的体积计算)

[简评:从学生熟悉的搭积木游戏开始,沟通学生已有知识连接点:要计量一个物体的体积,就要看这个物体中含有多少个体积单位。然后让学生想办法怎样求出一个长方体的体积。激发了学生的求知欲,并自然过渡到新课的学习。]

二、问题探索

1.探索长方体的体积计算方法。

(1)4人小组合作"搭积木"。电脑出示活动要求:用12个体积是1cm3的小正方体木块拼成不同形状的长方体,并填写表一:

每排个数排数层数1cm3正方体的个数体积(cm3)

长方体??

长方体二

长方体三

思考:

①长方体每排个数、排数、层数分别相当于长方体的什么?

②长方体的体积怎样计算?

(2)学生在合作交流中探讨长方体和正方体体积的计算规律。

生:每排个数就是长方体长所含厘米数,排数就是宽所含厘米数,层数就是高所含的厘米数。长方体的体积=每排个数×排数×层数,或长方体的体积=长×宽×高,或长方体的体积=底面积×高。

学生相互,鼓励学生自主探索。

(3)用实例验证规律。

师:刚才我们发现长方体的体积=长×宽×高,这个公式对所有的长方体都适用吗?

学生从自己准备的学具中自由选取若干个1cm3的小正方体,搭成形状不同的两个长方体,验证每个长方体的体积是否等于它的长、宽、高的`乘积,请每小组(2人小组)同学一边实验一边填写表二:

长(cm)宽(cm)高(cm)体积(cm3)

第一个长方体

第二个长方体

让学生说说自己的发现。(板书:长方体的体积=长×宽×高)

师:看来我们的发现是正确的,请给自己一颗探索星。

(4)用字母公式表示长方体的体积计算方法。

让学生观察板书和长方体的立体图,想一想:如果用v表示长方体的体积,a表示长,b表示宽,h表示高,用字母怎样表示长方体体积公式呢?

(板书:v=a×b×h)

师:闭上眼睛想一想,求一个长方体的体积必须具备什么条件?

(5)反馈练习。

师(课件出示例2):怎样计算电脑包装箱的体积?

学生审题,独立完成。

[简评:在探索长方体的体积的计算中,设置"操作→感知规律;验证→认识规律;练习→应用规律"几个层次,符合学生掌握知识的特点,使本环节的重难点得以突破。课堂气氛民主和谐,学生从同伴那里不断优化自己的思考方法。]

2.自学正方体的体积计算方法

(1)正方体的体积又怎样计算呢?猜猜看。

(2)你的想法正确吗,可以翻开书第52页看一看,也可以同桌交流自己的看法。

(3)说说正方体的体积计算方法,字母表示的方法(v=a·a·a或a3)。要计算正方体的体积,必须知道什么条件?

(4)反馈练习:

口答:这个正方体的体积是多少?

三、课堂活动

量一量、算一算。

(分组测量、并计算)

四、全课

说说本课学习中你的收获。

五、作业

练习十二第2、3题。

[简评:整堂课从学生提出假设,小组合作探索、交流得出长方体的体积计算公式,然后用长方体的体积计算公式推导正方体的体积计算方法,既体现了自主学习,又沟通了长方体和正方体体积的关系。解决实际问题的设计,让学生量一量,算一算,培养了学生动手实践和解决生活实际问题的能力。教师大胆地进行开放式教学,让学生经历探索的过程,让学生在合作中讨论交流,呈现了学生思维的多样性和层次性,发展了学生的思维,体现了教师主导与学生主体的教学观念。

正方体和长方体教案篇6

第三单元

长方体和正方体体积

第一课时:

教学目标:

1、使同学理解体积的意义,认识常用的体积单位:立方米、立方分米、立方厘米,培养初步的空间观念。

2、使同学知道计量一个物体的体积有多大,要看它包括多少个体积单位。

教学重点:

1、建立体积概念。

2、认识体积单位。

教学难点:

建立体积概念。

教学用具:学具袋。

教学过程:

一、导入:你们都听说过乌鸦喝水的故事吧,聪明的乌鸦是怎么喝到水的?这其中有什么道理?

二、新授:

1、体积的意义。

(1)、准备:我们也来做一个实验,取两个同样大小的玻璃杯。先往一个杯子里倒满水;取一块鹅卵石放入另一个杯子,再把第一个杯子里的水倒到第二个杯子里,会出现什么情况?为什么?这说明了什么?(鹅卵石占了一定的空间。)

(2)、每一个物体都占有一定的空间。下面的电视机、影碟机和手机,哪个所占的空间大?

?3〕、启发同学概括:物体所占空间的大小叫做物体的体积。(板书)

上面三个物体,哪个体积最大?哪个体积最小?

(4)、比较:用同学手中的文具比。谁的体积大?谁的体积小?

师:教室是一个较大的空间,课桌、讲台、同学、老师等占教室空间的一局部。整个学校是一个大空间,教师、办公室、操场、花池、领操台、旗座等都占有一定的空间,既有自身的体积。而整个宇宙是一个大空间,地球只是宇宙空间的一局部,而地球上的山、川、河流、一切建筑物、人等占地球的一局部。

2、体积单位:

(1)、讲:丈量长度要用长度单位,丈量面积要用面积单位,丈量体积要用体积单位。(板书)

认识体积单位:

常用的体积单位有:立方米、立方分米、立方厘米。可以分别写成

( 2)、认识立方厘米:

出示:棱长是1厘米的正方体,量一量它的棱长是多少?

说明:它的体积是1立方厘米。

谁的体积近似的接近1立方厘米?(色子或一个手指尖的体积大约是1立方厘米)

(3)、认识立方分米: (方法同立方厘米)

粉笔盒的体积接近于1立方分米。

(4)、认识立方米:

①出示1立方米的棱长的教具。观察后总结:边长是1米的正方体的体积是1立方米。

②认识1立方米的空间大小。

1立方米水约可以装满500个暖瓶。1立方米的木材约可以做课桌50张。

小结:

常用的体积单位有哪些?哪个体积单位大?哪个体积单位小?

体积单位的用途是什么?

(5)、练一练:选择恰当的单位:

橡皮的.体积用(

),火车的体积用(

),书包的体积用(

)。

(6)、比一比:

到现在为止,我们都了学哪些丈量单位?(板书)

长度、面积、体积三种单位的区别:

(7)、练习:

①说一说:丈量篮球场的大小用(

)单位。

丈量学校旗杆的高度用(

)单位

丈量一只木箱的体积要用(

)单位。

②、 一个正方体的棱长是1(

),外表积是(

),体积是(

)。(你想怎样填?)

③、判断:一只长方体纸箱,外表积是52平方分米,体积是24立方分米,它的外表积大。(

3、体积初步认识:

①决定体积大小,是看它含有体积单位的个数。

a 、演示:用棱长1厘米的4个正方体,拼一个长方体,说出它的体积是多少?

b、说出下面物体的体积(3个体积单位,4个体积单位,)

c 、摆一摆:请你也摆出一个体积是3立方厘米的物体。摆出体积是4立方厘米的物体。

d、小结:怎样知道一个长方体的体积是多少?

同一个体积数,可以摆出不同的形状。

②动手摆一摆:

请大家用手中的小正方体拼一个体积是8 立方厘米的长方体(或正方体)。(想一想你拼的物体体积是多少?)可以怎么摆?

三、总结:

这节课我们学习了体积的意义和体积单位。你有什么收获?

四、作业:

课后小结:

正方体和长方体教案6篇相关文章:

大树和小鸟中班语言教案6篇

小班数学4和5的教案精选6篇

幼儿园和纸有关的教案精选6篇

6和7的加减法教案参考8篇

活动方案和教案8篇

中班大树和小鸟教案8篇

安全和健康教案5篇

大树和小鸟教案7篇

大树和小草教案5篇

太阳和月亮活动教案8篇

正方体和长方体教案6篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
113376