写教案的过程中,教师需要不断反思和调整自己的教学方法, ,一份详尽的教案可以为教师提供清晰的教学目标,帮助他们把握课堂方向,以下是职场巴巴小编精心为您推荐的植树问题数学教案5篇,供大家参考。

植树问题数学教案篇1
【教学内容】:
?植树问题》是新课程标准实验教材四年级下册的内容。
【设计理念】:
?新课标》指出“应使学生经历从实际问题中抽象出数量关系,并运用所学知识解决问题的过程。”“植树问题”通常是指沿着一定的路线,这条路线的总长度被分成若干间隔。由于路线不同,植树要求不同,路线被分成的间隔和植树之间的关系就不同。本节课主要通过让学生自主探究、分析、比较的方法,找“植树问题”的规律。
【学期与教材分析】:
教材将植树问题分为几层次:两端都栽、两端不栽、环形情况等,其目的在于通过解决问题渗透数学思想方法。不同的教师在处理植树问题的教学上各有差别,而俞正强老师,一个衣着朴素、老式的布鞋、光亮的脑门、憨厚的笑容,对“植树问题”有自己独特的教学和见解,他抛开课本给出解决植树这类型问题的方法,从练习题的引入出发,层层递进的引导学生思考、分析、具体问题具体分析,使学生在轻松、愉快的学习氛围中完成。
【教学目标】
1、通过动手操作、合作交流,理解一条线段上植树问题的规律。
2、学会应用植树问题的模型去解决实际问题的方法。
3、经历和体验“复杂问题简单化”的解题方法和策略。
【教学重难点】
引导学生在探索中发现规律,培养学生的归纳能力及概括能力,从而初步认识植树问题,会解决相关的实际问题。
为完成上述教学内容和目标要求, 俞老师从简单的习题着手,进一步联系到生活中的植树等实际问题,使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。
一、练习引入,构建新知。
课前创设简单易懂的题目“20米,平均每5段一份,可以分几份?”学生很快列出算式20÷5=4(段),紧接着引出例题“20米路,每5米栽一棵树,可以栽几棵?”学生列出算式20÷5=4。
俞老师没有直接告诉学生答案,而是询问,为什么用除法?问题(1)中两道题有什么共同点?目的在于,让学生在练习中,突现知识的起点----平均分。而不同点又是什么?一是求点数,一个求线段。那么一共可以栽几棵树呢?学生通过观察知道了一共可以栽4+1=5(棵)树,整节课条理清晰,层次分明,浅显易懂,始终围绕重点内容进行展开教学。
二、注重实践,体验探究。
教学中,俞老师多次引导学生观察、假设、思考,让学生看到把一条线段平均分成4段,加上两个端点,一共有5个端点,也就是要在5棵树。使学生发现和理解,植树问题并非简单的除法就可以解决,植树问题种在的地方就是点,而非线段上,接着俞老师从生活实际出发,引导学生思考和观察,生活中哪些人把什么做在点子上?学生通过思考后纷纷答道:电线杆、垃圾桶、栽花、纽扣、排队等,从而发散了学生的思维,激起了学生的学习兴趣。在学生兴趣盎然的时候,俞老师提出问题“段数和点数有什么样的关系?”启发学生透过现象发现规律,也就是栽树的棵树要比段数(间隔数)多1。让学生经历这个过程并从中学习一些解决问题的方法和策略。
三、联系生活,拓展思维。
体验是构建的基础,俞老师通过有趣的游戏激发学生理解植树在实际生活中的利用。让一排学生当“点”每2米栽一棵树,可以栽几棵树?转变为如果路尽头有了一座房子,我们该怎么植树?如果路的头尾各有一个房子,又怎么植树?栽几棵?简单实在的实际问题,把本节课的知识点良好的应用到实际生活当中,使学生从旧知向隐含的新知迁移了,本节课也因此达到了升华。
总之,本节课,以学生的设计为出发点,通过线段这一简洁、直观的方法的观察、分析,引导学生积极认真的思考,进而透过现象发现不同情况下的棵树与段数之间的关系。本节课,俞老师没有课件,一支粉笔,一块黑板,真正是一节难得的常态课,值得我学习和借鉴。
植树问题数学教案篇2
一、教材
?植树问题》是《义务教科书.数学》五年级册第七单元《数学广角》中的内容。
教材将植树问题分为几个层次,有两端都栽、两端不栽、以及封闭曲线(方阵)中的植树问题。例1讨论的是在校园里的一条小路一边植树,需要多少棵树苗的问题,这是关于一条线段的植树问题。小路全长100米,每隔5米栽一棵树,两端都要栽,一共要准备多少棵树苗呢?让学生在解决这个问题的过程中发现规律,找到解决问题的有效方法,经历分析、思考问题的过程。例2是在例1的基础上继续探讨关于植树问题的另一种情况。教材给出动物园里绿化队在大象馆和猩猩馆之间的小路两旁栽树的问题,根据实际情况在这条小路两端都不栽树。本节课教学第106页——107页例1、例2和做一做的内容。
本节课在教材的处理上我作了如下调整,把原例1中的路长“100米”改为“20米”,把“两端要栽”这个条件去掉了。数据改小有利于学生思考,也便于学生动手操作,但并不影响我们要研究的数学问题。“两端要栽”这个条件去掉了,旨在让学生在一个开放的情境中,通过动手操作、演示用一一对应的思想方法去探究一条线段上的植树问题三种情况中间隔数与棵数的关系,将例2分成两道题放到利用模型、解决问题环节,有利于学生用发现的规律尝试用数学的方法来解决实际生活中的简单问题,从而使学生建立起深刻、整体的表象,提炼出植树问题解题思想方法。
二、教学目标
1.在给定目标下,感受针对具体问题提出设计思路、制订简单的方案解决问题的过程。通过应用和反思,进一步理解所用的知识和方法,了解所学知识之间的联系,获得数学活动经验。
2.学生已经学习了《除法的含义》、《表内除法》、《除数是一位数的除法》、《除数是两位数的除法》以及用线段图来解决问题的方法。从学生的思维特点看,五年级学生仍以形象思维为主,但抽象思维能力也有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。这部分内容放在这个学段,说明这个内容本身具有很高的数学思维和很强的探究空间,既需要教师的有效引领,也需要学生的自主探究。
3.借助直观,通过间隔和数的对应,理解间隔数与植树棵数的规律,建立不同情境下植树问题的数学模型。
4.学生在参与观察、动手操作、比较等数学活动中,发展解决问题的意识和能力,能清晰地表达自己的想法。学会独立思考,体会数形结合、一一对应、化归、建模等数学思想方法。
5.能运用所得到的规律解决实际问题。能和他人合作交流。
6.能积极参与数学活动,对数学有好奇心和求知欲。在数学学习过程中,体验获得成功的乐趣,建立自信心。感受数学在日常生活中的广泛应用,体验植树问题的价值和作用。
三、重、难点
重点:探索规律,建立植树问题模型,会应用植树问题的模型解决一些相
关的实际问题。
难点:理解“间隔”与“数“之间的对应关系,应用植树问题的模型灵活
解决一些相关的实际问题。
四、说教法与学法
教法:以情境教学法为主,直观演示法、引导发现法、讨论法、讲解法为辅。
学法:以学生发展为本,融观察、操作、合作、交流等方法为一体。
五、教学流程
(一)课前互动、引出课题
师:想让自己的头脑变得更聪明的同学请以最佳的状态坐好,都有这个美好的愿望,光说不练可不行。这节课就让我们走上思维的道路,一起去迎接新的'挑战吧。请看老师给你们带来的课前思维训练题:
1.一根木头长10米,要把它平均锯成9段,需要锯几次?
2.四年级在三楼,每上一层要走20个台阶,一共要走多少个台阶才能到三楼?(每层台阶数相同)
师:锯木头和上楼梯是生活中常见的现象,我们把它叫做“植树问题”,今天这节课我们就一起来研究有关植树问题的知识。(板书课题:植树问题)
(这一环节,旨在使学生在轻松的活动中为新课的学习作铺垫,而且让学生体会到只要处处留心用数学的眼光去观察宽阔的生活情境,就能发现在平常事件中蕴涵的数学规律,并应用这些规律去解决实际问题。)
(二)探索规律、建立模型
1.创设情境,引入学习。
园林工人打算在一条长20米的笔直小路一边植树,请同学们按照每隔5米栽一棵的要求帮忙设计一份植树方案,并说明理由.(创设为园林工人设计植树方案的情境,贴近学生生活,让学生感受到数学问题于生活,为生活服务的思想,并且激发学生积极参加到学习活动中。我还把教材例题100米,改成20米,主要因为我感觉100米的距离还是有些长,学生在动手操作时,不便于研究。同时也遵从了教参中把复杂问题简单化的思想)
(二)动手操作,设计方案
同桌二人合作,摆一摆或画一画。
(先给学生创设宽松的思维环境,让学生打开思路,找到在一条线段上栽树时的不同方法,让思维如花般绽放。)
3.交流汇报,演示。
4.比较方案,探究规律。
(1)间隔数与总长、间距的关系。
①出示植树的三种情况,学生观察相同点。
②学生汇报,教师板书。
③探究间隔数与总长、间距的关系。(向学生渗透此类问题的思想方法、让学生发现其中的规律,建立起数学模型的过程。)
(2)间隔数与植树棵数之间的关系。
①学生观察不同点,教师讲解三种方法的名称。
②同桌交流棵树和间隔数的关系。
③汇报交流。(板书)
④共同探究原因。(演示:树与间隔之间的一一对应关系。)(让学生在一个开放的情境,突现学生的知识起点,从而用一一对应的思想方法让学生理解多1少1的原因,建立起深刻、整体的表象,提炼出植树问题解题的方法。)
(3)小结:
①植树问题规律,②解决植树问题方法:先求出间隔数,再看属于哪种类型。
(三)巩固应用、内化提高
师:既然宝贝已经保存在你的大脑里了,那可不能让它天天睡懒觉,得常常拿出来发挥一下它的神奇作用。下面这几道题就需要它大显身手。请看:
1.有一条500米的石子路,在石子路的一侧每隔5米栽一棵(只栽一端),需要准备几棵树?
2.同学们在全长1000米的小路一边植树,每隔8米栽一棵(两端都栽)。一共需要多少棵树苗?
3.大象馆和猩猩馆相距60米。绿化队要在两馆间的小路一侧栽树,相邻两棵树之间的距离是3米。一共要栽几棵树?
4.在一条全长180米的街道两旁安装路灯,(两端都要安装),每隔6米安一座。一共要安装多少座路灯?
(练习题设计有层次性,充分体现本节课的重点,难点,并且利用学生熟悉的生活场景,带着浓厚的兴趣和高涨的积极性,解决实际生活中的问题,也体现让数学知识回归生活,为生活服务的思想,使学生进一步体会,现实生活中的许多不同事件,都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它,感悟数学建模的重要意义。)
(四)课堂总结,拓展延伸
六、说板书设计
(一条线段上的)植树问题
植树问题数学教案篇3
教学目标:
1、建立并理解在线段上植树(两端都栽)的情况中“棵数=间隔数+1”的数学模型。
2、利用线段图理解“点数=间隔数+1”“总长=间隔数×间距”等间隔数与点数、总长、间距之间的关系,解决生活中的实际问题。
教学重点:建立并理解“点数=间隔数+1”的数学模型。
教学难点:培养用画线段图的方法解决问题的意识,并能熟练掌握这种方法。
教学准备:课件。
教学过程:
一、情境出示,设疑激趣
教师:同学们,我们都有一双勤劳的双手,它不仅能写,能画,其实我们的手指中还隐藏了许多数学知识!现在请大家伸出你们的左手,这里有几根手指呢?
预设:5根
教师:那手指与手指间的空隙叫什么呢?
预设:间隔
教师:在数学上,我们通常把两个手指间的空隙叫做间隔。大家观察一下,5根手指之间有几个间隔呢?
预设:4个间隔
教师:现在再看,现在伸出了几根手指呢?
预设:4根间隔
教师:4根手指之间有几个间隔呢?
预设:3个间隔
教师:5根手指之间有4个间隔,4根手指之间有3个间隔,你们发现手指数和间隔数之间有数量关系了吗?
预设1:手指数比间隔数多1。
预设2:间隔数比手指数少1.
教师:那你能不能用数学式子来表示手指数与间隔数的关系呢?
预设1:手指数=间隔数+1。
预设2:间隔数=手指数-1.
教师:连手上都有这么多数学奥秘,看来数学真是无处不在!这节课我们就来研究跟“间隔”有关的植树问题。(板书课题)
二、引入新知,经历过程,感受方法
教师:请看,请大家默读一下:(课件出示问题)。
引例:同学们准备在全长20米的小路一边植树。每隔5米栽一棵(两端要栽)那么这条路的一边将被树隔成了几段?
教师:告诉我们哪些条件?(提问)要求什么问题?(提问)
教师:同学们先用尝试用线段图来表示他们之间的关系。(学生动手并提问完成)
教师:这里的有几个间隔?
预设:4个
教师:那你们能不能用一个数学式子来表示?
预设:20÷5=4
教师:20表示什么?5表示什么?4表示什么?(分别提问)
预设:20表示这条路的长度(一般我们把它称为总长),5表示每隔5米栽一棵(我们一般把它称为间隔长),4表示有4个间隔。
教师:4个间隔相当于4段,所以我们数学上通常把有几段称为段数。所以4后面的单位是段。因此我们就得到了公式:全长÷间隔长=段数(提问)。根据除法算式中的关系,间隔长该怎么求?(提问)段数该怎么求?(提问)
教师:那现在如果我想在这条路上种树,一共需要几棵树苗呢?
预设:5棵。
教师:怎么列数学关系式?(提问)
预设:4+1=5(棵)
教师:为什么这样列呢?
预设:因为两端都栽。
教师:你们都跟他一样吗?所以你发现了树的棵树与段数之间的关系了吗?(提问推出棵树与段数的两个公式)
教师:刚才我们是在20米长的路上种树,那现在如果在100米长的路上种树呢?你还会吗?请看例1(课件出示例1)。大家在书本上完成。
例1:同学们在全长100m的小路一边植树,每隔5m栽一棵(两端要栽)。一共要栽多少棵树?
(请同学上台展示)
三、利用新知,解决问题
教师:连例题都难不倒你们!同学们真是太聪明了!可是,在“植树问题”中,一定要是“树”吗?除了“树”,还能换成别的事物吗?大家请看(出示生活中的图片实例)可见植树问题的应用领域是非常广泛的,下面就请大家应用刚才学的知识帮老师解决几个问题。
教师:今年的圣诞节刚结束,为了度过一个美好的圣诞节,张老师前几天在家可花了不少的心思!你们看——(分别出示3道练习)
练习1.我买了装礼物的袜子,像这样每两只袜子之间隔0.5米,挂成一排长8米(两端都挂),一共买了几只袜子?
教师:现在老师要把题目难度加大。(做完的同学可以把你的想法跟同桌说说)
练习2.我又买了21只铃铛,挂成一排,长6米(两端都挂),每两只铃铛之间要隔几米?
练习3.我还买了像圣诞树的衣服来装扮,15人排成一排,迎接圣诞老人(两端都排),每两个人之间隔2米,这个队伍有几米呢?
四、回顾思考,全课总结
教师:通过这一节的学习,你有什么收获?
思考:假如只栽一端或两端都不栽,那又会是什么情形呢?同学们课后去探究吧!
五、逆向思考,拓展新知
教师:最后老师有一个难度很大的题目想留给同学们回家思考!请看:
练习4.在圣诞节这天,老师看见100位圣诞老人一起来给我们送礼物,他们并列排成两队(两端都排),每前后两个圣诞老人之间相距1米,则这个队伍排了有多长?
六、布置作业
植树问题数学教案篇4
教学内容:
人教版小学数学五年级上册第106页例1。
教学目标:
1、知识与技能目标:
(1)、初步认识植树问题,理解并掌握在一条直线上“两端都栽”的情况下,间隔数和棵树之间的关系。
(2)、在理解间隔数和棵树规律的基础上解决简单的“两端都栽”的实际问题。
2、过程与方法目标:
(1)、通过观察比较、动手操作、合作交流等活动探究新知,经历知识的形成过程。
(2)、经历和体验“数形结合”、“化繁为简”的解题策略和数学方法。
(3)、培养学生的合作意识,养成良好的交流习惯。
3、情感态度与价值观目标:
(1)、感受数学在生活中的广泛应用。
(2)、在自主探究的过程中体验成功的喜悦,树立学生学习数学的决心。
教学重点:
通过动手操作、合作交流,探究出植树问题中两端都栽时,间隔数和棵树之间的关系,抽象出植树问题的数学模型。
教学难点:
把现实生活中类似的问题同化为“植树问题”,运用植树问题的模型解决一些相关的实际问题。
教学过程:
一、谜语导入。
(1)、师:同学们一定喜欢玩猜谜语吧?(课件出示):两棵小树十个叉,不长叶子不开花。能写会算还会画,天天干活不说话。(谜底:手)
谁能很快说出谜底?(生口答)。
师:你思维真敏捷。
(2)、师:同学们,伸出你的左手,仔细观察,你能看到数字几?
(3)、认识间隔、间隔数。
(预设1:数字5,5个手指;数字4,4个手指缝。)
师:你观察得真认真!
师:(课件出示)手指间的空隙,在数学上我们叫做间隔。(板书:间隔。)一只手上有四个间隔,我们就说它的间隔数是4。(板书:“间隔”后加“数”)
(预设2:生:有5数字5,5个手指头;有数字4,手指之间有4个间隔。
师:你懂得真多,能告诉大家什么叫做间隔吗?
生口答,师出示手的图片,板书“间隔”和“间隔数”。)
(4)、认识生活中的“间隔”。
师:生活中间隔无处不在。(课件出示:人民大会堂柱子、路灯杆、摆花盆、钟声等),师边放课件边叙述说明。
师:想一想,生活中还有哪些地方有间隔?
生充分交流
(5)、揭示并板书课题。
师:像这样有间隔现象存在的问题,统称为植树问题。(板书:植树问题)。今天我们就一起来探究有关植树问题的知识。
二、探究新知。
(一)、创设情境,提出问题。
1、出示题目信息:一条新修的公路,全长1000米,在它的一侧种树(两端都栽),每隔5米栽一棵,一共要栽多少棵?
2、理解题意。
(1)、从题目中你得到了哪些数学信息?
(2)、理解题意。
师:解决问题时,要善于抓住关键词或句子,分析题意。你认为哪些词是比较重要的?
题目中,“两端都栽”是什么意思?
师:既然有“两端都栽”的情况,就有“两端都不栽”的情况,也有“只在一端栽”的情况。(课件演示:两端都栽,两端都不栽,一端栽一端不栽三种情况。)今天我们重点研究两端都栽的情况。
(3)、同学们大胆猜测一下,一共要栽多少棵?
(指名生答)
(4)、提出验证。
a:师:到底哪个结论是正确的呢?我们怎么来验证一下?
b:生尝试寻求方法。
生:可以画一画图。
师:你的想法非常好,可以用一条线段代表1000米长的公路,画一画图,数一数实际种了多少棵。)
(5)、尝试验证,边叙述边课件演示:因为两端都栽,所以要先在起点栽一棵,然后每隔5米栽一棵,再隔5米再栽一棵,再隔5米再栽一棵……看看一共要栽多少棵。
师:现在栽了多少米了?就这样一直栽到1000米处吗?
(预设生:太麻烦了,浪费时间)
(6)寻求“化繁为简”的数学方法。
师:老师和你们有同感。1000米的路太长了,你觉得路的总长要是多少米好了?
生尝试发表自己的想法。
(预设生:50米、20米、10米
师:我明白同学们的意思了,就是把路的总长换成比较小的数就行了。你们的想法太棒了!)
师:在数学研究中,遇到比较复杂的问题时,我们就从简单的问题入手,即把“大数变成小数”进行研究,这样就可以“化繁为简”,找出规律。(板书:大数——小数,化繁为简)。比如,1000米太长了,我们可以转化成20米栽几棵,从而找出规律。
师:老师在电脑上可以画成小树,你们在练习本上,也画成一棵棵小树吗?怎样表示小树比较简单?
(预设生:画成小树太麻烦,可以用一个点表示一棵小树比较简单。)
师:你的方法真好!用线段图来表示,简单明了。(课件演示:小树变点,成为线段图)
(二)、自主探究。
(1)、师:同学们,今天你们就来当一次“小小数学家”,研究一下当总长分别是10米,15米、20米、30米时,两端都栽的情况下,棵数有什么规律。请你们拿出题卡,认真画出线段图,并结合线段图把表格中的数据补充完整。
(2)、生独立填表。
(3)、汇报交流:谁把你的结果向大家展示一下?
(师:谁和他的结果一样请举手?
师:看来大家都做得非常认真!)
师:为了便于大家观察,我把表格展示在大屏幕上。
(4)、师:(边课件演示边引导)仔细回忆刚才画线段图填表的过程,认真分析这几组数据,能否说出总长、间隔、间隔数之间存在什么关系?(课件表格下出示:总长o间隔=间隔数)
间隔数与棵数之间又存在什么样的关系?(课件表格下出示:间隔数o( )=棵数)。
那么,当两端都栽时,如果知道全长和间隔,怎样求出棵数?
(5)、学生独立思考,充分交流。
结合生答,师完成板书:总长÷间隔=间隔数,间隔数+1=棵树。
(6)、师:如果不画线段图,你能说出总长是50米时,每隔5米栽一棵,两端都栽,一共要栽多少棵吗?
学生口述答案。
师:你真了不起!
(三)、应用规律,解决问题。
(1)、出示前面的例题。
师:利用刚才我们发现的两端都栽时,棵数和间隔数之间的关系,你能找到这道题的正确结果吗?
(2)、生找出正确解法。
(3)师:200表示什么意思?为什么要加1?(200表示间隔数,因为间隔数加一等于棵树,所以要加一。)
(师:你讲得太棒了!老师真心佩服你!)
(4)、师:以后再遇到生活中类似于“两端都栽”的实际问题时,就可以运用我们今天学到的知识进行解决。
小练笔:运动会上,在一条长200米的笔直跑道的一侧插彩旗(两端都插),每隔10米插一面,一共要插多少面彩旗?
师:请大家默读题目,然后在练习本上独立完成。
三、学以致用。
1、同学们,数学就在我们身边!看,我们的《小苹果》舞蹈比赛中同样蕴含着植树问题的知识。
(课件配图片出示)五二班学生参加《小苹果》舞蹈表演,其中一列纵队全长18米,如果每两个同学之间相距2米,这列队伍一共站了多少人?
生独立审题,尝试在练习本上独立完成。
生交流方法和思路。
2、钟声与钟声之间也有间隔,你能同化成植树问题进行解答吗?
(课件出示)广场上的大钟,5时敲5下,8秒钟敲完。12时敲响12下,敲完需要多长时间?
指名读题,理解题意。
师:同学们,认真倾听钟声敲响几下?仔细观察它们之间有几个间隔?(课件出示:结合5次钟声,线段图出示四个间隔)
(学生结合课件演示,说出:钟声敲响5次,共有4个间隔。)
大钟5时敲5下,有4个间隔,共用了几秒钟?由此能求出什么?那么12时敲12下,有几个间隔?敲完用多长时间吗?请同学们尝试独立在练习本上完成。
汇报交流,说出思路。
3、师:你们真了不起。请到知识城堡一展身手吧。
(课件出示)8个同学站成一队,每两个同学之间距离1.5米。这列队伍全长多少米?
师:线段图可以帮助我们解决许多数学问题。请同学们在练习本上画出线段图,再解答。
生汇报交流。
四、全课总结。通过今天的学习,你有什么收获?
生充分交流。
师:在今天的探究活动中,我们不仅发现了植树问题中“两端都栽”的规律,能运用这个规律解决生活中类似的问题,而且知道了数学研究中“化繁为简”方法,会通过画线段图帮助我们解决数学问题。其实,在植树问题中还有许多知识,比如两端都不栽时、只有一端栽时,或在封闭图形上栽时,棵数分别有什么规律呢?我们将在以后的学习中继续探究。
植树问题数学教案篇5
教学要求:
1、使学生理解小数乘以整数的计算方法及算理。
2、培养学生的迁移类推能力。
3、引导学生探索知识间的练习,渗透转化思想。
教学重点:小数乘以整数的算理及计算方法。
教学难点:确定小数乘以整数的积的小数点位置的方法。
教学用具:放大的复习题表格一张(投影)。
教学过程:
一、引入尝试:
孩子们喜欢放风筝吗?今天我就带领大家一块去买风筝。
1、小数乘以整数的意义及算理。
出示例1的图片,引导学生理解题意,得出:
⑴例1:风筝每个3.5元,买3个风筝多少元?(让学生独立试着算一算)
(2)汇报结果:谁来汇报你的结果?你是怎样想的?(板书学生的汇报。)
用加法计算:3.5+3.5+3.5=10.5元
3.5元=3元5角 3元×3=9元 5角×3=15角 9元+15角=10.5元
用乘法计算:3.5×3=10.5元
理解3种方法,重点研究第三种算法及算理。
⑶理解意义。为什么用3.5×3计算? 3.5×3表示什么?(3个3.5或3.5的3倍.)
(4)初步理解算理。怎样算的?
把3.5元看作35角
3.5元 扩大10倍 3 5角
× 3 × 3
1 0. 5 元 1 0 5角
缩小10倍
105角就等于10.5元
(6)买5个要多少元呢?会用这种方法算吗?
2、小数乘以整数的计算方法。
象这样的3.5元的几倍同学们会算了,那不代表钱数的 0.72×5你们会算吗?(生试算,指名板演。)
⑴生算完后,小组讨论计算过程。
板书: 0.72
× 5
(2)强调依照整数乘法用竖式计算。
(3) 示范: 0. 7 2 扩大100倍 7 2
× 5 × 5
3. 6 0 3 6 0
缩小100倍
(4) 回顾对于0.72×5,刚才是怎样进行计算的?
使学生得出:先把被乘数0.72扩大100倍变成72,被乘数0.72扩大了100倍,积也随着扩大了100倍,要求原来的积,就把乘出来的积360再缩小100倍。(提示:小数末尾的0可以去掉)
●注意:如果积的末尾有0,要先点上积的小数点,再把小数末尾的“0”去掉。
(5)专项练习
①下面各数去掉小数点有什么变化?
0.34 3.5 0.201 5.02
②把353缩小10倍是多少?缩小100倍呢?1000倍呢?
③判断
13.5
× 2
2. 7 0
(6)小结小数乘整数计算方法
计算 7 ×4 0.7×4 25×7 2.5×7
观察这2组题,想想与整数乘整数有什么不同?
怎样计算小数乘以整数?
① 先把小数扩大成整数;
② 按整数乘法的法则算出积;
③ 再看被乘数有几位小数,就从积的右边起数出几位,点上小数点。
专项练习 练习一 4
二、运用
1、填空。
4.5 ( ) 0 .7 4 ( )
× 3 × 3 × 2 × 2
( ) 1 3 5 ( ) 1 4 8
2、做一做 书p3 2
三、体验:(1)今天我们学习了什么?(板书课题)
(2)小数乘以整数的计算方法是什么?
四、作业: 练习一 1、2、3
五、板书: 小数乘整数1
3.5元 3 5角
× 3 × 3
1 0. 5 元 1 0 5角
例2
0. 7 2 扩大到它的100倍 7 2
× 5 × 5
3. 6 0 3 6 0
缩小到它的1/100
六、课后反思:
植树问题数学教案5篇相关文章: