一份详细的教案必然是教师结合实际的教学任务所写的,教案是教师教学能力的重要体现,展示教师的专业水平和素养,职场巴巴小编今天就为您带来了圆的面积数学教案8篇,相信一定会对你有所帮助。
圆的面积数学教案篇1
教学目标
1、经历圆面积计算公式的推导过程,掌握圆的面积计算公式。
2、能正确运用圆面积的计算公式计算圆的面积。
3、在探究圆面积的计算公式过程中,体会转化的数学思想方法;初步感受极限的思想。
教学重点和难点:
圆面积的计算公式推导。
教学准备:
圆形纸片、剪刀、多媒体课件等。
教学过程
课前谈话:
聊一聊《曹冲称象》的故事。
(设计意图:放松学生的紧张心情,为课堂教学做好了心理准备;另一方面,用《曹冲称象》的故事,唤起学生已有的经验。设计“怎么不直接称大象的重量?”这一关键问题,抓住学生回答中的“用石头代替大象”“石头的重量和大象的重量相等”等要点,把学生经验中的“转化”思想激活,为新课的教学做好思想方法上的准备。)
教学过程:
一、开门见山,揭示课题
(出示一个圆)大家看,这是什么图形?
我们已经认识了圆,学习了圆的周长,这节课我们一起来学习圆的面积。(板书课题:圆的面积)
(设计题图:采用开门见山的的引入方式,这样设计简洁明快,结构紧凑,能保证把过程性目标落实到位。)
二、第一次探究,明确思路,体会“转化”的数学思想方法
请你想一想,什么是圆的面积呢?
圆所占平面的大小就是圆的面积。那怎么求圆的面积呢?
圆能不能转化成我们学过的图形呢?我们可以试一试。请大家利用手中的圆纸片和准备的工具在小组内研究研究。
(设计意图:在学生迷茫时指明了思考的方向和方法,又让学生把“圆”这个看似特殊的图形(用曲线围成的图形)与以前学过的图形(用直线段围成的图形)有机地联系起来,沟通知识之间的联系,促成迁移。)
怎样让扇形和三角形的面积接近一些?
现在,有两种思路,一种是把圆折一折想转化成三角形,还有一种是想通过剪拼把圆转化成平行四边形,你们发现这两种方法的共同点了吗?
把圆这个新图形转化成已经学过的图形求出面积。
(设计意图:“你们发现这两种方法的共同点了吗?”这一关键问题,旨在引导学生通过回顾反思,达到渗透“转化”这一数学思想方法的目的。)
三、第二次探究,明确方法,体验“极限思想”
我发现一个问题,不管是折成的三角形,还是剪拼成的平行四边形都不是很像,怎么才能更像呢,这就是下面要研究的问题。请每个小组在两种思路中选择一种继续研究。
为什么要折这么多份?
把圆分的份数越多,其中的一份越接近三角形。三角形的底可以看成这段弧,三角形的高可以看成是圆的半径。你们会求三角形的面积吗?三角形的面积会求了,能求出圆的面积吗?
把圆剪成更多份,能让拼成的图形更接近于平行四边形。
(设计意图:让学生真切地看到“自己想象的过程”,充分地体验“极限思想”。)
四、第三次探究,深化思维,推导公式
刚才同学们借助学具通过动手操作,都找到解决问题的方法了。一种是把圆转化成长方形求出面积;一种是把圆转化成三角形,得到圆的面积。可是数学学习不仅需要动手操作,更需要借助数字、字母和符号等进行动脑思考和推理。现在,老师想给大家提个更高的要求:每个小组能不能还利用刚才选择的方法,推导出圆的面积计算公式呢?
(设计意图:在第二次探究中,学生主要是借助学具进行动手操作,明晰求圆的面积的方法。操作对于小学生学习数学是必不可少的手段和方法,但数学思维的特点是要进行逻辑思考和推理。
第三次探究结果的交流,教师有意识地先让学生交流将圆转化成长方形求出圆的面积公式的方法,因为这种方法学生理解起来比较容易,是要求每个学生都要掌握的方法。)
五、解决问题
1、现在你能求出黑板上这个圆形纸片的面积了吧?需要什么条件?这个圆的半径是10厘米,面积是多少呢?请大家做在练习本上。(请一名学生到黑板上板演。)
(教师组织交流。)
2、知道圆的半径可以求出圆的面积,那么,知道直径和周长能不能求出圆的面积呢?教师出示直径为6分米的圆和周长为12.56厘米的圆,学生思考后说出求面积的方法,即要求圆的面积必须先根据直径或周长求出圆的半径。
(设计意图:因为本节课的主要目标是引导学生去经历探究圆的面积公式的过程,充分体验“转化”和“极限思想”,而有关求圆的面积的变式练习,以及利用圆的面积公式解决实际问题的练习都安排在下一节课中。因此,这节课只设计了几个基本练习,目的是检验学生对圆的面积的理解和掌握程度。)
六、小结
圆的面积数学教案篇2
一、教学目标:
1、首先带动课堂气氛
2、教会学生什么是面积。
3、学习圆柱体侧面积和表面积的含义。
4、能够求圆柱的侧面积和表面积的方法。
二、教学重点:
动手操作展开圆柱的侧面积
三、教学难点:
圆柱侧面展开图的多样性,并能够将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积、表面积的计算公式。
四、教具准备:
圆柱表面展开图、纸质圆柱形茶叶罐、长方形纸、剪刀、圆柱体纸盒。
五、教学过程:
(一)、创设情境,引起兴趣。
出示:牛奶盒,纸箱,可比克。
提问(1)这些东西我们很熟悉吧!谁来说说它们是什么形状的呢?(指名说)
(2)制作这些包装盒,至少需要多大面积的材料?(指名说)
师:谁能说说上一节课你学过圆柱体的哪些知识?
生:........
师:请同学们拿出你自制的圆柱体模型,动手摸一摸
生:动手摸圆柱体
师:谁能说一说你摸到的是哪些部分?
生:.......
师:你所摸到的圆柱体的表面,它的大小叫做表面积,我们这节课就要学习如何求圆柱体的表面积的大小。板书课题:圆柱的表面积
(二)、探索交流,解决问题。
圆柱的侧面积是一个曲面,那么怎样才能把它变成我们熟悉的平面呢?(找学生回答问题)提问:请大家猜一猜,如果我们将圆柱体的侧面(也就是这个包装纸)展开,会是什么形状的呢?
研究圆柱侧面积用自己喜欢的方式,将茶叶罐的包装纸展开,看看得到一个什么图形?先猜想,然后说说,再操作验证。这个图形各部分与圆柱体茶叶罐有什么关系?小组交流。(学生要说清楚展开的方法不同能得到什么不同的图形)(展开的形状可能是长方形、平行四边形、正方形等)
1、独立操作利用手中的材料(纸质小圆柱,长方形纸,剪刀),用自己喜欢的。方式验证刚才的猜想。
2.操作活动:
(1)用自己喜欢的方式,将茶叶罐的包装纸展开,看看得到一个什么图形?
(2)观察这个图形各部分与圆柱体茶叶罐有什么关系?独立操作后,与小组里的同学交流
3.小组交流能用已有的知识计算它的面积吗?
4、小组汇报。(选出一个学生已经展开的图形贴到黑板上)
重点感受:圆柱体侧面如果沿着高展开是一个长方形。(这里要强调沿着高剪)
这个长方形与圆柱体上的那个面有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)
板书:
长方形的面积=长×宽
↓↓↓
圆柱的侧面积=底面周长×高
所以,圆柱的侧面积=底面周长×高
s侧=c×h
如果已知底面半径为r,圆柱的侧面积公式也可以写成:s侧=2∏r×h
师:如果圆柱展开是平行四边形,是否也适用呢?
学生动手操作,动笔验证,得出了同样适用的结论。
(因为刚才学生是用自己喜欢的方式剪开的,所以可能已经出现了这种情况。此时可以让已经得出平行四边形的学生介绍一下他的剪法,然后大家拿出准备好的圆柱纸盒用此法展开)
(四)、练习
求圆柱的侧面积(只列式不计算)
1。底面周长是1.6米,高是0.7米
2。底面直径是2分米,高是45分米
3。底面半径是3.2厘米,高是5分米
(五)研究圆柱表面积
1、现在请大家试着求出这个圆柱体茶叶罐用料多少。需要计算哪几个面的面积?需要什么条件?(指名说)
2、动画:圆柱体表面展开过程
3、圆柱体的表面积怎样求呢?得出结论:圆柱的表面积=圆柱的侧面积+底面积×24.一个圆柱形茶叶筒的高是10厘米,底面半径是3厘米,它的表面积是多少平方厘米(学生独立完成后交流反馈)
(六),巩固应用,内化提高
1、比较有盖,无盖,一个盖的圆柱物体的表面积计算的异同?多媒体出示:水管,水桶,糖盒提问:这些圆柱形物体在计算表面积时有什么不同?(指名说)
2、做一个没有盖的圆柱形水桶,底面半径是10厘米,高是40厘米,至少需要多少平方厘米?(得数保留整百平方厘米)重点感受:没有盖,至少这两个词语。在实际中,使用的材料都要比计算得到的结果多一些。因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1.这种取近似值的方法叫做进一法。
3.一个圆柱形水池,直径是20米,深2米,在池内的侧面和池底抹一层水泥,水泥面的面积是多少平方米?
六、教学结束:
布置学生用本节课所学知识制作出一个笔筒,下节课带来送给自己的朋友。
圆的面积数学教案篇3
教材分析
1、《圆的面积》是人教版小学数学六年级上册第五单元中的一节课,本节内容包括教材67-71页例1、例2及69页“做一做”。
2、本节课是在学习了圆的周长以后进行教学的,为后面学习求阴影部分面积做了铺垫。
学情分析
小学六年级学生在学习空间图形方面,已经具有一定的想象能力,并有了一定程度的计算能力,在学习方法上也有了一定的积淀,同时他们也具备一定的逻辑思维、抽象推理能力,他们能够自主、合作、探究地进行学习,对学习数学的兴趣浓厚。但是作为十来岁的学生,他们对事物的认识是十分有限的,加上他们的个人表现欲望十分强烈,自我控制能力差等因素的影响。因此 在教学时我凭借课件 结合学生的`实际情况, 联系学生已有的知识点 设计教学环节确定教学方法, 确立教学重点、难点和目标 减少盲目性 注意培养学生的动手动脑能力,让学生通过动手把圆等分成16等份和32等份,学会用转化的思想找到圆的面积计算公式,让学生在动脑动手中掌握知识。
教学目标
一、知识与技能
1、学生通过观察、操作、分析和讨论,推导出圆的面积公式。
2、能够利用公式进行简单的面积计算。
3、培养学生空间概念和逻辑思维能力。
二、过程与方法
经历从未知转化已知过程,体验自主探究,合作交流的方法。
三、情感态度与价值观
渗透转化思想,初步了解极限思想,培养学生的观察能力和动手操作能力。
教学重点和难点
重点:正确计算圆的面积。
难点:圆的面积公式推导过程。
圆的面积数学教案篇4
教学目标:
1、学生通过观察、操作、分析和讨论,推导出圆的面积公式。
2、能够利用公式进行简单的面积计算。
3、渗透转化思想,初步了解极限思想,培养学生的观察能力和动手操作能力。
教学重难点:
渗透转化思想,初步了解极限思想,培养学生的观察能力和动手操作能力。
教学过程
一、尝试转化,推导公式
1、确定“转化”的策略。
师:同学们,你们想一想,当我们还不会计算平行四边形的面积的时候,是利用什么方法推导出了平行四边形的面积计算公式呢?
引导学生明确:我们是用“割补法”将平行四边形转化成长方形的方法推导出了平行四边形的面积计算公式。
师:同学们再想想,我们又是怎样推导出三角形的面积计算公式的呢?
师:对了,我们将平行四边形、三角形“转化”成其它图形的方法来推导出它们的面积计算公式。
2、尝试“转化”。
师:那么,怎样才能把圆形转化为我们已学过的其它图形呢?(板书课题:圆的面积)
请大家看屏幕(利用课件演示),老师先给大家一点提示。
师:(教师配合课件演示作适当说明)如果我们把一个圆形平均分成16份,其中的每一份都是这个样子的。同学们,你们觉得它像一个什么图形呢?
师:是的,其中的每一份都是一个近似三角形。请同学们再想一想,这个近似三角形这一条边(教师指示)跟圆形有什么关系呢?
引导学生观察,明确这个近似三角形的两条边其实都是圆的半径。
师:如果我们用这些近似三角形重新拼组,就可以将这个圆形“转化”成其它图形了。同学们,老师为你们每个小组都准备了一个已经等分好了的圆形,请你们动手拼一拼,把这个圆形“转化”成我们已学过的其它图形,开始吧!
预设:学生利用这种近似三角形拼组图形会有一定的难度,教师要加强巡视和有针对性的指导,既鼓励学生拼出自己想象中的图形,又要引导他们拼出最简单、最容易计算面积的图形。一般情况下,学生会拼出如下几种图形。
3、探究联系。
师:同学们,“转化”完了吗?好,请大家来展示一下你们“转化”后的图形。
预设:
分组逐个展示,并将其中“转化”成长方形的一组的作品贴在黑板上。如果有小组转化成了不规则的图形,教师应及时引导他们转化为我们已学过的平面图形。
师:好,各个小组都不错。现在请同学们思考一个问题:你们把一个圆形“转化”成了现在的图形之后,它们的面积有没有改变?请小组内讨论。
师:谁来告诉大家,它们的面积有没有改变?
师:是的,没有改变,就是说:这个近似的长方形的面积=圆的面积。
师:虽然我们现在拼成的是一个近似的长方形,但是如果把圆等分成32份、64份、128份、256份……一直这样下去分成很多很多份,拼成的图形就变为真正的长方形。
4、推导公式。
师:现在我们就来看这个长方形。同学们,如果圆的半径为r,你们知道这个长方形的长和宽分别是多少吗?现在请小组为单位进行讨论讨论。
师:好,同学们,谁能首先告诉老师,这个长方形的宽是多少?
预设:
根据学生的回答,教师演示课件,同时闪烁圆的半径和长方形的宽,并标示字母。
师:那这个长方形的长是多少呢?(教师边演示课件边说明)这个长方形是由两个半圆展开后拼成的,请大家看屏幕,这个红色的半圆展开后,其中这条黄色的线段就是长方形的长,请同学们仔细观察,这个长方形的长究竟与圆的什么有关?究竟是多少呢?
预设:
教师引导学生明白:这个长方形的长与圆的周长有关,并且是圆的周长的一半。并且让学生通过计算得出长方形的'长就是πr。
师:现在我们已经知道了这个长方形的长和宽,它的面积应该是多少?那圆的面积呢?
预设:
老师根据学生的回答进行相关的板书。
师:你们真了不起,学会了“转化”的方法推导出圆的面积计算公式。现在请大家读一读,记一记,写一写圆的面积计算公式。
二、运用公式,解决问题
1、教学例1。
师:同学们,从这个公式我们可以看出,要求圆的面积,必须先知道什么?如果我们知道一个圆形花坛的直径是20m,我们该怎样求它的面积呢?请大家动笔算一算这个圆形花坛的面积吧!
预设:
教师应加强巡视,发现问题及时指导,并提醒学生注意公式、单位使用是否正确。
2、完成做一做。
师:真不错!现在请同学们翻开数学课本第69页,请大家独立完成做一做的第1题。
订正。
3、教学例2。
师:(出示例2)这是一张光盘,这张光盘由内、外两个圆构成。光盘的银色部分是一个圆环。请同学们小声地读一读题。开始!
师:怎样求这个圆环的面积呢?大家商量商量,想想办法吧!
师:找到解决问题的方法了吗?
师:好的,就按同学们想到的方法算一算这个圆环的面积吧!
预设:
教师继续对学困生加强巡视,如果还有问题的学生并给予指导。
交流,订正。
三、课堂作业。
教材第70页第2、3、4题。
四、课堂小结
师:同学们,通过这节课的学习,你有什么收获?
课后作业:完成数练第31页。
圆的面积数学教案篇5
教学目标:
1、使学生学会已知圆的周长求圆的面积的解题思路与方法,理解并学会环形面积。
2、培养学生灵活、综合运用知识的能力,运用所学的知识解决简单的实际问题。
3、培养学生的逻辑思维能力。
教学重点:
培养综合运用知识的能力。
教学难点:
培养综合运用知识的`能力。
教学过程:
一、复习。
1、口算:
3242528292202
267
2、思考:
(1)圆的周长和面积分别怎样计算?二者有何区别?
(2)求圆的面积需要知道什么条件?
(3)知道圆的周长能够求它的面积吗?
二、新课。
1、教学练习十六第3题
小刚量得一棵树干的周长是125.6cm,这棵树干的横截面积是多少?
已知:c=125.6厘米s=r2
r:125.6(23.14)3.14202
=125.66.28=3.14400
=20(厘米)=1256(平方厘米)
答:这棵树干的横截面积1256平方厘米。
3、教学环形面积。
(1)例2光盘的银色部分是个圆环,内圆半径是2cm,外圆半径是6cm。它的面积是多少?
已知:r=6厘米r=2厘米求:s=?
3.14623.1422
=3.1436=3.144
=113.04(平方厘米)=12.56(平方厘米)
113.04-12.56=100.48(平方厘米)
第二种解法:3.14(62-22)=100.48(平方厘米)
(2)小结:环形的面积计算公式:
s=r2-r2或s=(r2-r2)
(3)完成做一做:一个圆形环岛的直径是50m,中间是一个直径为10m的圆形花坛,其他地方是草坪。草坪的占地面积是多少?
三、巩固练习。
1、学校有个圆形花坛,周长是18.84米,花坛的面积是多少?
选择正确算式
a、(18.843.142)23.14
b、(18.843.14)23.14
c、18.8423.14
2、环形铁片,外圈直径20分米,内圆半径7分米,环形铁片的面积是多少?
3、课堂小结。
(1)这节课的学习内容是什么?
(2)求圆的面积时题中给出的已知条件有几种情况?怎样求出圆面积?
已知半径求面积s=r2
已知直径求面积s=()2
已知周长求面积s=()2
(3)环形面积:s=(r2-r2)
四、作业
课本p70第4、6、7题。
教学追记:
本堂课,在我带领着学生利用教具进行操作,在此基础上,让学生自主发现圆的面积与拼成长方形面积的关系,圆的周长、半径和长方形的长、宽的关系,并推导出圆的面积计算公式。教学环形的面积计算时,我充分放手给学生,让学生通过思考讨论领悟出求环形的面积是用外圆面积减去内圆面积,并引导他们发现这两种算法的一致性,同时提醒学生尽量使用简便算法,减少计算量。
圆的面积数学教案篇6
?教学内容】
圆的面积
?教学目标】
知识与技能:通过操作,使学生理解圆的面积公式推导过程,掌握求圆的面积的方法并能正确计算。
过程与方法:激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括能力,发展学生的空间观念。
情感、态度与价值观:培养学生的空间观念。
?教学重难点】
重点:
1、理解圆的面积公式的推导过程。
2、掌握圆的面积的计算公式,能够正确地计算圆的面积
难点:理解圆的面积公式的推导过程。
?导学过程】
?知识回顾】
1、还记得这些平面图形的面积计算公式吗?
2、平行四边形的面积公式推导过程还记得吗?
我们是通过剪拼的方法把它转化成长方形的。
?新知探究】
(一)、定义:
1、请你摸一摸哪里是圆的.面积?
2、师:圆所占平面的大小就是圆的面积。
引导学生操作:
师:(拿出一个圆片)我们怎么剪?圆的大小是由什么决定的?(直径、半径)
生:(圆的大小由直径或半径决定。)沿直径或半径剪。
师剪第一刀,再问:第二刀怎么剪?
师:我们要把圆通过剪成多份并用拼的方法转化成学过的规则图形,为了计算上的方便,我们把圆平均分成多份。
将一个圆分别平均分成2份、4分、8分、16份,分别罗列排好。请学生观察四组图。
师:随着等分份数的不断增加,你有什么发现吗?
a:随着等分份数的不断增加,曲线越来越直。
b:随着等分份数的不断增加,每一小份越来越接近三角形。
(三)拼摆推导面积公式。
1、拼摆
师:把圆转化成什么图形?我们来试一试。
学生操作,演示学生的作品。
师:转化后的图形面积与圆的面积有什么关系?面积不变。
课件出示:把圆等分成不同等份时的图形的趋势。
2、推导面积公式
小组讨论:长方形各部份相当于圆的什么?
请你推导圆的面积公式。
学生汇报:(2~3名学生说,老师说,全班说推导过程)
(4)学生齐读圆面积公式(s=πr2)。并说说圆面积的大小与什么有关?(半径)给直径怎办?(先求出半径,再求面积)
?设计意图】在这个环节教师成为学生的学习伙伴,在教师的引导和启发中,让每个学生都动口,动手,动脑,培养学生学习的主动性和积极性。创造一个和谐、高效的学习氛围。
?知识梳理】
本节课学习了什么知识?
?随堂练习】
1、根据下面所给的条件,求圆的面积。
(1)、半径2分米
(2)、直径10厘米
2、一个雷达屏幕的直径是40厘米,它的面积是多少平方厘米?
3、判断对错:
(1)圆的半径越大,圆所占的面积也越大。()
(2)圆的半径扩大3倍,它的面积扩大6倍。()
圆的面积数学教案篇7
【教学内容】
?义务教育课程标准实验教科书·数学》六年级上册第69~71例1、例2。
【教学目标】
学生通过观察、操作、分析和讨论,推导出圆的面积公式。
2.能够利用公式进行简单的面积计算。
3.渗透转化思想,初步了解极限思想,培养学生的观察能力和动手操作能力。
【教、学具准备】
cai课件;
2.把圆8等分、16等分和32等分的硬纸板若干个;
3.剪刀若干把。
【教学过程】
一、尝试转化,推导公式
1.确定“转化”的策略。
师:同学们,你们想一想,当我们还不会计算平行四边形的面积的时候,是利用什么方法推导出了平行四边形的面积计算公式呢?
预设: 引导学生明确:我们是用“割补法”将平行四边形转化成长方形的方法推导出了平行四边形的面积计算公式。
师:同学们再想想,我们又是怎样推导出三角形的面积计算公式的呢?
师:对了,我们将平行四边形、三角形“转化”成其它图形的方法来推导出它们的面积计算公式。
2.尝试“转化”。
师:那么,怎样才能把圆形转化为我们已学过的其它图形呢?(板书课题:圆的面积)
请大家看屏幕(利用课件演示),老师先给大家一点提示。
师:(教师配合课件演示作适当说明)如果我们把一个圆形平均分成16份(如图三),其中的每一份(如图四,课件闪烁其中1份)都是这个样子的。
同学们,你们觉得它像一个什么图形呢?
师:是的,其中的每一份都是一个近似三角形。请同学们再想一想,这个近似三角形这一条边(教师指示)
跟圆形有什么关系呢? 预设: 引导学生观察,明确这个近似三角形的两条边其实都是圆的半径。
师:如果我们用这些近似三角形重新拼组,就可以将这个圆形“转化”成其它图形了。同学们,老师为你们每个小组都准备了一个已经等分好了的圆形,请你们动手拼一拼,把这个圆形“转化”成我们已学过的其它图形,开始吧!
预设: 学生利用这种近似三角形拼组图形会有一定的难度,教师要加强巡视和有针对性的指导,既鼓励学生拼出自己想象中的图形,又要引导他们拼出最简单、最容易计算面积的图形。
一般情况下,学生会拼出如下几种图形(如图五、图六、图七)。
圆的面积数学教案篇8
教学目标:
1、知道圆的面积的含义,理解和掌握圆的面积的计算公式,能够正确计算圆的面积。
2、理解圆的面积公式的推导过程,感受转化的数学思想。
3、根据圆的半径、直径或周长来计算圆的面积,解决简单的有关圆的面积计算的实际问题。
教学重难点:
重点:理解和掌握圆面积的计算方法。
难点:圆面积公式的推导。
准备:圆形纸片
一. 创设情境。
s:同学们,请看这里?(展示课件动画)
s:现在小马有一个问题:我的这个活动范围是一个什么形状?
x:是圆形。
s:小马还有一个问题,我的活动范围占地多大?这个多大指的是圆
的什么量呢?
x:是圆的面积。
s:对了,就是圆的面积,我们现在就来一起学习:圆的面积。
二. 探索交流,学习新知。
1. 出示电子课本。
s:请大家请大家翻到课本67页的彩图,有一个问题:这个圆形草坪的占地面积是多少平方米?怎样计算一个圆的面积呢?你认为怎么做,大胆来说一说。
x1:公式。
x2:转化成学过的图形来计算。
s:(好,转化成学过的图形来计算,看来这位同学预习的非常好,一下子就抓住了问题的'重点。)要转化成学过的图形,这个方法不错,那我们来回想一下,我们以前学过哪些图形的面积?(单击课件)
x:长方形,正方形,三角形,平行四边形,梯形等等。
(单击课件)
s:但是这么多学过的图形,转化成哪一个比较好呢?大家来选一选。
x:长方形,正方形,平行四边形。
s:喔,这三个图形比较简单,所以我们应该尽量转化成简单的图形来做。请大家看黑板上的电子课本(电子课本)
s读:在硬纸上画一个圆。大家附页1中的圆都准备好了
吗?
x:准备好了。
s:请大家举起来展示一下。好的请放下,老师想问大家,通过剪纸拼图,你发现了什么?
x:(学生自由回答)
s:同学们回答的都很好,现在我来演示一下,大家看看还有没有新的发现。
(课件演示)
2. 讲解课件。
4份时s问:这个像是我们以前学过的图形吗?
x:不像。
s:不像没关系,我们继续分,再分成8份,这次呢?
x:有点像平行四边形了。
s:继续分。(演示到32份)
s:这下更像一个平行四边形了,但是,这还没完,我们来回顾一下刚才我们的拼图过程。
s:我们从圆开始,先是4份,它完全是一个不规则的四不像,再分成8份,还是不像,然后依次16份,32份,还可以继续往下分的份数越来越多。最后,它会无限地接近一个什么形状呢?
x:平行四边形。
x:长方形。
s:到底是长方形还是平行四边形。
s:启发:平行四边形和长方形的区别在哪里?平行四边形的这两条边是斜的,而长方形是竖的。大家从这个4份的图开始看可以观察到,这条边的倾斜度越来越小,最后它就会变得无限接近于90度的竖线,而这个图形也会近似的什么图形?
x:长方形。
(板书:长方形)
s:它不是真正的长方形,而是一个无限接近于长方形的近似长方形。 正如课本68页最上面的这句话。
3. 电子课本p68
s:如果分的长方形。同时我们的小精灵又给我们提出了一个问题:拼成的关系?
s:请大家注意看我的课件演示。(讲解)
板书:长方形的面积= 长 *宽 圆的面积=圆周长的一半 * 半径 =c*r 2
=2?
2r*r
=πr*r
2 =πr
2即 s=πr
s:从这条公式我们可以看出,要想求出圆的面积,只要知道什么就可以了?
x:半径。
s:同学真聪明。好的,现在我们已经掌握了圆面积的计算公式了,要不要试一试这条公式好不好用?
s:来看一下我们这节课刚开始看到的这个圆形花坛,原来它的直径有20m,要想求出它的面积,先要求出什么来?
x:半径。
学生先做题,再用课件演示答案。
三. 拓展练习。
1. 回答(尽量不要动笔)。
2. 计算(78.5 m2)
s= πr2
2 = 3.14×5
= 3.14×5×5
=3.14×25
=78.5 (m2)
四. 回顾总结。
谁愿意和大家分享你的学习成果?(学生自己总结)
老师补充:1.化圆为方。
2. s= πr2
3.计算圆面积的必要条件是什么(半径)
板书:
1. 化圆为方。
圆的面积数学教案8篇相关文章:
★ 环保教案教案8篇
★ 数学领域教案8篇